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Abstract

INTRODUCTION: BrainAge models based on neuroimaging data have diagnostic

classification power but have replicability issues due to site and patient variability.

BrainAgemodels trainedonneuropsychological tests couldhelp distinguish stablemild

cognitive impairment (sMCI) fromprogressiveMCI (pMCI) toAlzheimer’s disease (AD).

METHODS: A linear regressor BrainAge model was trained on healthy controls using

neuropsychological tests and neuroimaging features separately. The BrainAge delta,

predicted age minus chronological age, was used to distinguish between sMCI and

pMCI.

RESULTS: The cross-validated area under the receiver-operating characteristic (ROC)

curve for sMCI versus pMCI was 0.91 for neuropsychological features in contrast to

0.68 for neuroimaging features. The BrainAge delta was correlated with the time to

conversion, the time taken for a pMCI subject to convert to AD.

DISCUSSION: The BrainAge delta from neuropsychological tests is a good biomarker

to distinguish between sMCI and pMCI. Other neurological and psychiatric disorders

could be studied using this strategy.
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Highlights

∙ BrainAge models based on neuropsychological tests outperform models based on

neuroimaging features when distinguishing between stable mild cognitive impair-

ment (sMCI) from progressiveMCI (pMCI) to Alzheimer’s disease (AD).

∙ The combination of neuropsychological tests with neuroimaging features does not

lead to an improvement in sMCI versus pMCI classification compared to using

neuropsychological tests on their own.

∙ BrainAgedelta of bothneuroimaging andneuropsychologicalmodelswas correlated

with the time to conversion, the time taken for a pMCI subject to convert to AD.
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1 INTRODUCTION

Recent advances in aging modeling have been aided by the use of

machine learning and deep learning to create BrainAge models1–4

based on neuroimaging data. BrainAge models have been applied

rapidly to the medical fields to identify neurological disorders, such

as mild cognitive impairment (MCI) and Alzheimer’s disease (AD),5–11

traumatic brain injury,12,13 and multiple sclerosis,14,15 and also psychi-

atric disorders, such as schizophrenia16–19 and bipolar disorder.19,20

Two types of models are used in classification tasks: those that use the

difference between subject’s predicted age trained on healthy controls

(cognitively normal [CN]) and subject’s chronological age, BrainAge

delta, as a biomarker for classification,1 and those that modify a deep

learning model originally trained on BrainAge prediction and retrain

the network on a classification task to distinguish CN subjects from

patients.4 The first type of model suffers from a lack of specificity for

a given disease and the BrainAge delta seems to vary considerably

between studies andmodels.3 The second type ofmodel does not have

a specificity problem, but may suffer from the lack of enough training

data for the patient subjects. One of the critical limitations of using

neuroimaging is the variability intrinsic to this type of imaging across

sites. If analyses are not carried out appropriately, site effects can dom-

inate andmake themodels unusable. This poses a great challengewhen

thinking about bringing these methods to a clinical setting. There have

been recent advances on using deep learning BrainAge models to min-

imize these effects and ensure replicability.2 An alternative is to train

these types of models with features better suited to the disease under

study, such as neuropsychological tests.21,22

We aimed to develop a BrainAgemodel trained on neuropsycholog-

ical features that can be used to identify a biomarker of MCI to AD

conversion. We used the data consisting only of CN subjects for train-

ing. The output of the model, defined as NeuropsychBrainAge delta in

this study, represents the difference between the subject’s predicted

ageby themodel and the subject’s chronological age. To show the appli-

cability of this model to a neurological disorder in the clinical setting,

we applied the model to a cohort of subjects with MCI, of whom some

remained stable andothers progressed toAD. Theproposedbiomarker

is capable of distinguishing with good accuracy between stable MCI

(sMCI), thosewho remainMCI, andprogressiveMCI (pMCI), thosewho

converted to AD. There have been BrainAge models based on neu-

ropsychological features to study cognitive age23 and to predict age

directly from behavioral tests.24 However, to the authors’ knowledge,

there are no previous studies using these tests to predict age and then

use the difference between predicted age and chronological age as a

biomarker.

2 METHODS

2.1 Subjects

Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

RESEARCH INCONTEXT

1. Systematic review: We reviewed the literature exten-

sively. The use of machine-learning based BrainAge mod-

els has been adopted widely; however, they have focused

on neuroimaging-based features. The use of neuropsy-

chological features to create a BrainAge model with

diagnostic classification power is unexplored.

2. Interpretation: We present a neuropsychological

BrainAge model that has discriminative power to differ-

entiate stable mild cognitive impairment (sMCI) from

progressive MCI (pMCI) to Alzheimer’s disease (AD). The

biomarker has high accuracy and is correlated with the

time to conversion, the time taken for a pMCI subject to

convert to AD.

3. Future directions: This article poses a framework for

the creation of BrainAge models based on neuropsycho-

logical tests that can be applied to other neurological

disorders and psychiatric orders. BrainAge models based

on similar types of features have the possibility of being

more discriminant due to the specificity of the tests to

each pathology.

(adni.loni.usc.edu).25 The ADNI was launched in 2003 as a public–

private partnership, led by principal investigator, Michael W. Weiner,

MD.Theprimary goal ofADNIhas been to testwhether serialmagnetic

resonance imaging (MRI), positron emission tomography (PET), other

biologicalmarkers, and clinical and neuropsychological assessment can

be combined to measure the progression of mild cognitive impairment

(MCI) and early AD. (For up-to-date information, see www.adni-info.

org.)

All subjects in the ADNI2 and ADNI3 phases who had an initial

visit T1-weighted imaging and neuropsychological evaluation were

extracted fromtheADNIdatabase. This includedhealthy controls (CN),

andMCI and AD subjects. The data set statistics can be summarized as

follows: 629CNwithmeanageof 72.1±6.8ofwhich265aremale, 635

MCI with mean age of 72.5 ± 7.8 of which 356 are male, and 208 AD

with mean age of 74.7 ± 8.2 of which 121 are male. Using longitudinal

data, we identified conversors: those who converted from CN to MCI

(N = 64), those who converted from MCI to AD (N = 152), and those

who converted from CN to AD (N = 7). The main sociodemographic,

cognitive, and brain indices for training and test sets and subjects

separated by clinical label and prognosis can be found in Table S1.

A seconddata setwas created to study the effect of homogenization

on the results. For this data set only, sites with more than 10 CN sub-

jects were used, and which had at least 1 MCI and 1 AD subject. The

CN and MCI cohorts were also resampled to ensure that they had the

same age distribution as the AD cohort.

The model was tested in the task of distinguishing between sMCI

subjects, those who remained MCI, and pMCI subjects, those who

http://www.adni-info.org
http://www.adni-info.org
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converted to AD. As it is impossible to know whether or an sMCI sub-

ject will convert to AD at a future date, sMCI patients were considered

stable if they remained with a diagnosis of MCI after 3 years from the

initial visit. Similarly, only subjects with pMCI who converted to AD

within 3 years from the initial visit were used. As there are more sMCI

subjects, these were randomly sampled to obtain a balanced data set

containing equal amounts of sMCI (N=98) and pMCI (N=98) subjects.

2.2 Features

Models were built using two different types of features: structural

brain features extracted from T1-weighted images and neuropsycho-

logical features. The first set of features were used to build a reference

model so that we can compare our secondmodel.

T1-weighted images from each subject’s first baseline visit were

processed to obtain volumes of different brain structures. Struc-

tural Image Evaluation with Normalisation of Atrophy Cross-sectional

(SIENAX),26 part of FMRIBSoftware Library (FSL)27 was used to obtain

gray matter volume, white matter volume, cerebrospinal fluid volume,

and peripheral grey matter volume as well as a volume scale value.

FMRIB’s Integrated Registration and Segmenration Tool (FIRST)28 was

used to segment and calculate the volumes of the thalamus, caudate,

putamen, pallidum, brainstem, hippocampus, amygdala, and accum-

bens. The volume scale value was used to control for differences in

brain size. For the data set used for more powerful homogenization,

PyCombat29 was used to homogenize, taking into account the vol-

ume scale value, gender, and phase in which the patient was recruited.

Twelve features were used in total.

Neuropsychological assessments from each subject’s first base-

line visit were used as features for the second model. This con-

sisted of scores from standard neuropsychological tests: Mini-Mental

State Examination (MMSE),30 Alzheimer’s Disease Assessment Scale

(ADAS),31 Functional AssessmentQuestionaire (FAQ),32 andMontreal

Cognitive Assessment (MoCA),33 as well as two metrics generated

in the ADNI study: ADNI Memory score34 and ADNI Executive

Function.35 Thus six features were used in total. TheMMSE is a widely

used screening test that assesses several cognitive domains, including

orientation, attention, memory, language, and visuospatial abilities. It

is commonly employed as a brief initial assessment tool for cognitive

impairment and is often used to detect potential signs of dementia

or other cognitive disorders. The ADAS is a comprehensive test bat-

tery designed to evaluate cognitive functions related primarily to AD

measuring a range of cognitive abilities, including memory, language,

attention, and problem-solving. The ADAS is used frequently used in

research settings and clinical trials to track the progression of AD

and assess the effects of interventions or treatments. The FAQ is a

questionnaire-based assessment that focuses on a person’s ability to

perform activities of daily living, measuring the level of impairment in

various functional domains, such as finance management, medication

management,meal preparation, housekeeping, and transportation. The

FAQ is commonly used to evaluate functional decline and indepen-

dence in individualswith cognitive impairment or dementia. TheMoCA

assesses multiple cognitive domains, including attention and concen-

tration, executive function, memory, language, visuospatial ability, and

orientation. The MoCA is often utilized to detect MCI and to screen

for potential cognitive impairments associatedwith various conditions,

including AD and other dementias. ADNIMemory score is a composite

memory score thatmeasures thememory cognitive domain by combin-

ing memory domain scores of the Rey Auditory Verbal Learning Test,

ADAS, MMSE, and Logical memory. ADNI Executive Function score

is a composite score that measures the executive function cognitive

domain by combining executive function domain scores of the WAIS-

R Digit Symbol Substitution, Digit Span Backwards, Trails A and B,

Category Fluency, and Clock Drawing. Both ADNI Memory and ADNI

Executive Function have better psychometric characteristics than the

widely used individual components.34,35 The sensitivity of all of these

tests can vary depending on various factors, such as the population

being tested, the scoring procedures used, and the specific version or

formof the test.36 Generally these tests demonstrate good to excellent

sensitivity in terms of internal consistency and test–retest reliability,

particularly when administered by trained professionals according to

standardized protocols.37 The ADNI study ensured standardization

during the administration of the tests to ensure consistency and reli-

ability. However, it is important to note that reliability measures may

vary across different studies or versions of the tests, and specific reli-

ability coefficients may be available in the respective test manuals or

research literature.

2.3 Model

A linear regressor was trained in a supervised fashion (code can be

found in https://github.com/JGarciaCondado/ADNIBrainAge). Python

3.9 and the package scikit-learn 1.0 were used for the analysis. Other

models such as Ridge with polynomial feature expansion, K-Nearest

Neighbors, andXGBoostwere also tested. The task at hand is to use the

features extracted from each subject at the initial visit to predict the

age of the subject at the initial visit (Figure 1A). The model is trained

using only CN subjects. For training, 85% of all CN subjects are used

and 15% are used for testing. The features are normalized by subtract-

ing the trainingmean and dividing by the training SD. Themodel can be

summarized below:

BrainAge =
∑
i

wifi + b (1)

where fi is the value of each normalized feature, wi the weight of each

feature, and b the intercept. The weights and the intercept are chosen

to minimize the mean square error between the predicted age (Brain

Age) and the subject’s age at the initial visit (Chronological Age,Ω):

min
w, b

‖BrainAge −Ω‖22 (2)

There is a bias in the model, as younger controls tend to be given

higher ages and older controls are given lower ages than they are as it

https://github.com/JGarciaCondado/ADNIBrainAge
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F IGURE 1 Overview of the BrainAgemodel and classification task. (A) Training of the BrainAgemodel on healthy controls with input data
consisting of structural features or neuropsychological features. A total of 12 structural brain features were used, consisting of volumemeasured
inmm3 for: white matter, graymatter, peripheral graymatter, cerebrospinal fluid, thalamus, caudate, putamen, pallidum, hippocampus, amygdala,
accumbens, and brainstem. A total of six neuropsychological features were used:Mini-Mental Status Examination (MMSE), Alzheimer’s Disease
Assessment Scale (ADAS), Functional Assessment Questionaire (FAQ), Montreal Cognitive Assessment (MoCA), ADNIMemory, and ADNI
Executive Function. After training the linear regressor on the healthy controls age estimation task, an age bias correction was applied to deal with
the inherent bias of regression to themean problem. (B) Description of the classification task between stable mild cognitive impairment (sMCI)
and progressive (pMCI). First, features were extracted for each subject as with healthy controls. Then, using either neuropsychological features or
structural features, the trainedmodel and bias correctionwere applied to obtain a predicted age. The BrainAge delta was calculated by subtracting
the chronological age from the predicted age. This delta was then used as an input to a logistic regressor to determine a threshold for labeling using
a five-fold cross validation (CV) scheme. (C) Number of subjects used for training with healthy controls, the number of subjects used to test the
performance of BrainAgemodels on unseen healthy controls, and number of sMCI and pMCI used in the classification task. pMCI, progressivemild
cognitive impairment.

is a regression to the mean problem.38,39 It can be thought of in terms

of our best estimate for a subject that we know nothing about, being

the mean, so younger patients tend to be given higher ages and older

patients lower ages. The predicted BrainAge can be adjusted by taking

into account the actual age of subjects by fitting the followingmodel38:

BrainAge = 𝛼 × Ω+ 𝛽 (3)

The coefficientsα and β represent the slope and intercept. The train-
ing set is used to fit α and β. Careful analysis and considerations have

to be taken according to which method is used to do the correction,

such as wether the predicted age or the delta, the difference between

predicted and true age, will be used for further analsysis, so as not to

introduce new biases such as inflating correlation effects by choosing

an appropriate method such as the one used; an alternative method

to that used in this study is to use age as a covariate when studying

group differences.38,40,41 The fitted α and β are then used to correct

the predictions in a test set using:

Corrected BrainAge = BrainAge + [Ω− 𝛼 × Ω+ 𝛽] (4)

2.4 Biomarker

The model is trained on CN subjects only, so it is then applied to

our test CN subjects, MCI subjects, and AD subjects to predict their

BrainAge. Our biomarker to differentiate our subjects is the BrainAge

delta, defined as:

BrainAge delta = Corrected BrainAge −Ω (5)

Notice that by using the corrected BrainAge, the BrainAge delta will

not correlatewith age butwill be related to our variable of interest, the

cohort each subject belongs to.

Finally, to assess the potential of BrainAge delta to differentiate

between sMCI and pMCI subjects, a logistic regressor is trained using

a five-fold, cross-validation strategy on our task data set (Figure 1B).

Four logistic regressors are trainedwith the following inputs: one using

StructBrainAge delta (delta found using the model trained using struc-

tural imaging features), one using NeuropsychBrainAge delta (delta

found using the model trained using neuropsychological features),

one using the sum of both deltas, and finally one using both deltas
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TABLE 1 Summarymetrics of accuracy of BrainAge prediction in
healthy controls for training and test sets of a linear regressor.

Set Input Features MAE RMSE r R2

Training Neuroimaging 4.02 5.19 0.65 0.42

Neuropsychological 4.91 6.31 0.38 0.15

Test Neuroimaging 4.14 5.17 0.49 0.22

Neuropsychological 4.51 5.59 0.32 0.08

Abbreviations: MAE, mean absolute error; r, Pearson’s correlation; R2, R-

squared; RMSE, root mean squared error.

independently. Moreover, we also follow a different strategy of train-

ing logistic regressors directly on the features (using only struc-

tural features, using neuropsychological features, and using all fea-

tures) adjusted for age, sex, and education to compare to the

logistic regressors trained on BrainAge deltas. In total, seven dif-

ferent logistic regressors were trained. Principal component analy-

sis (PCA) decomposition was also carried out on each set of fea-

tures (structural, neuropsychological, and all features) and logistic

regressors trained with the components that explained 90% of the

variance.

3 RESULTS

3.1 Correlation between features and age

As a first initial assessment of the suitability of the proposed fea-

tures for predicting age, Pearson correlation coefficients were calcu-

lated between each feature and age of the CN subjects. Correlations

between structural features and age are shown in Figure 2A, ranging

from cmin = 0.12 (brainstem, p < 0.02) to cmax = 0.55 (gray matter,

p < 3 × 10−39). As noted in previous research,42 there is a strong

linear correlation between certain brain structures and population

aging above 50 years. Correlations between neuropsychological fea-

tures and age are shown in Figure 2B, ranging from cmin = 0.08 (FAQ,

p < 0.10) to cmax = 0.35 (ADNI Executive Function, p < 7 × 10−15).

These have a weaker correlation yet there is still one.

3.2 A model trained only on healthy controls

A BrainAge model was trained on CN subjects on two set of features

(neuroimaging and neuropsychological) and tested on a different set

of CN subjects. Summary metrics of the age-prediction accuracy for

both train and test sets can be found in Table 1. The more complex

models—Ridge with polynomial features expansion, K-Nearest Neigh-

bors, and XGBoost—all performed similarly to the linear regression

models. Hence, given the linear relationship between age and features

as shown in Figure 2 and followingOccam’s razor, the linearmodel was

used for the rest of the study.

3.3 Differences in BrainAge deltas between
cohorts

We applied both BrainAge models, one trained on neuroimaging

features and another trained on neuropsychological features, to all

cohorts: the test set CN, MCI, and AD subjects. We also applied age-

bias correction with parameters fitted on the training set as outlined

in Equation (4) on all cohorts. Then we calculated the BrainAge delta

for each subject. The BrainAge delta was significantly higher between

CN and MCI for both neuroimaging (−0.32 ± 3.28 vs 1.92 ± 3.97,

p < 1 × 10−7) and neuropsychology (−0.21 ± 2.19 vs 4.42 ± 3.95,

p<1×10−26), aswell as betweenMCI andADsubjects, for neuroimag-

ing (1.92 ± 3.97 vs 4.98 ± 4.50, p < 1 × 10−17) and neuropsychology

(4.42± 3.95 vs 16.07± 6.38, p< 1× 10−83). The differences are shown

in Figure 3A.

We next addressed the BrainAge delta of the pMCI cohort, those

labeled as MCI at the baseline visit but who would progress to AD

during follow-ups. There was a correlation between the BrainAge

delta and the conversion time, the number of years until the sub-

ject was labeled AD. Pearson’s correlation between conversion time

and BrainAge delta was stronger when neuropsychological features

were used (−0.48, p < 1 × 10−9) as compared to neuroimaging fea-

tures (−0.23, p < 0.005), illustrated in Figure 3B. The absolute value

of Pearson’s correlation between time to conversion and PCA decom-

position of structural features ranged from cmin = 0.002 (p < 0.99)

to cmax = 0.19 (p < 0.02) and for neuropsychological features ranged

from cmin = 0.15 (p < 0.07) to cmax = 0.40 (p < 1 × 10−8). The abso-

lute value of Pearson’s correlation between time to conversion and

individual features corrected by age, education, and sex for structural

features ranged from cmin = 0.004 (palidum, p < 0.96) to cmax = 0.26

(peripheral graymatter, p<0.002) and for neuropsychological features

ranged from cmin = 0.23 (MoCA, p< 0.006) to cmax = 0.37 (ADNI Exec-

utive Function, p < 1 × 10−5). The neuropsychological based BrainAge

delta has the highest absolute Pearson’s correlation with time to

conversion.

3.4 Feasibility of application to identify sMCI
versus pMCI subjects using BrainAge deltas

Next we asked whether the BrainAge Delta could discriminate

between sMCI subjects (those who remain MCI for at least 3 years

after the initial visit) from pMCI subjects (those who convert to AD

within 3 years of the initial visit). A logistic regressor was trained on

these BrainAge deltas using the neuroimaging model (StructBrainAge

delta), the neuropsychological model (NeuropsychBrainAge delta), the

sum of both deltas, or each delta individually. The ROC curve for each

can be seen in Figure 4. The best results were obtained when using the

NeuropsychBrainAge deltas only as seen in Table 2.

Further investigations were carried out to compare whether it

would be better to use the features directly in a logistic regressor. For

this purpose, logistic regressors to classify sMCI versus pMCI were
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F IGURE 2 Correlation between BrainAgemodel features and age in healthy controls (cognitively normal [CN]) subjects resulting from (A)
structural imaging features and (B) neuropsychological test features. The title of each graph describes the precise feature and its value of the
Pearson’s correlation coefficient with age. *p< 0.05, **p< 0.01, ***p< 0.001.



GARCIA CONDADO ET AL. 7 of 11

F IGURE 3 BrainAge delta for each subject group and its relation to conversion time for subjects with progressivemild cognitive impairment.
Structural BrainAge refers to themodel trained on neuroimaging features andNeuropsychBrainAge refers to themodel trained on
neuropsychological features. (A) BrainAge delta for each cohort, healthy control (CN), MCI, and Alzheimer’s disease (AD). (B) Time to conversion
for subjects with pMCI as a function of BrainAge delta, where R indicates Pearson’s correlation coefficient. Time to conversion is defined as the
time between the subject’s first baseline visit and the visit at which the subject is labeled with AD. **p< 0.01, ***p< 0.001.MCI, mild cognitive
impairment; pMCI, progressivemild cognitive impairment.

TABLE 2 Results of different logistic regressors trained in a 5-fold CV scheme to distinguish between stable mild cognitive impairment and
progressivemild cognitive impairment subjects using different BrainAge deltas as inputs and possible combinations as well as using neuroimaging
and neuropsychological features corrected by age, sex and education directly as inputs.

Model N◦ Inputs AUC Accuracy Sensitivity Specificity

StructBrainAge delta (SBAD) 1 0.68 [0.53–0.83] 0.61 [0.51–0.72] 0.63 [0.49–0.76] 0.63 [0.47–0.80]

NeuropsychBrainAge delta (NBAD) 1 0.91 [0.84–0.98] 0.85 [0.76–0.94] 0.87 [0.78–0.97] 0.87 [0.76–0.99]

Addition (SBAD+NBAD) 1 0.86 [0.79–0.94] 0.79 [0.69–0.89] 0.81 [0.70–0.93] 0.81 [0.66–0.96]

Multidomain (SBAD, NBAD) 2 0.90 [0.85–0.96] 0.85 [0.77–0.93] 0.86 [0.77–0.95] 0.85 [0.72–0.95]

Neuroimaging features 12 0.63 [0.59–0.67] 0.58 [0.55–0.61] 0.58 [0.52–0.64] 0.58 [0.50–0.67]

Neuropsychological features 6 0.92 [0.86–0.98] 0.83 [0.73–0.94] 0.86 [0.75–0.97] 0.86 [0.73–1.00]

All features 18 0.89 [0.81–0.97] 0.84 [0.77–0.90] 0.86 [0.78–0.94] 0.85 [0.71–0.99]

Abbreviation: AUC, area under the curve.

Bold indicates themodel with highest value for that specific metric.

trained using a five-fold CV scheme directly on neuroimaging and

neuropsychological features corrected for age, sex, and education

instead of BrainAge deltas as the input variables. The Neuropsy-

chBrainAge delta–trained logistic regressor outperformed all other

logistic regressors trained directly on neuroimaging or neuropsycho-

logical features on accuracy, sensitivity, and specificity, as shown in

Table 2. However, the model trained on neuropsychological features

corrected for age, sex, and education had better AUC and very sim-

ilar accuracy, sensitivity, and specificity. PCA decomposition showed

no increases in performance compared to using the features directly;

performancemetrics can be seen in Table S2.

3.5 Effects of homogenization of neuroimaging
features

Finally, we also tested whether the use of homogenization tech-

niques on neuroimaging features improved the performance of logistic
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F IGURE 4 Receiver-operating characteristic (ROC) curve for
different logistic regressors models trained in a five-fold CV scheme to
discriminate between sMCI and pMCI subjects. (light blue) Structural
refers to using the Structural BrainAge delta as the input to the logistic
regressor. (orange) Neuropsych refers to using the Neuropsych
BrainAge delta as the input to the logistic regressor. (green) Addition
refers to using the sum of the Structural BrainAge delta and the
Neuropsych BrainAge delta for each subject as a single input to the
logistic regressor. (red)Multidomain refers to using Neuropsych
BrainAge delta and Structural BrainAge delta as two separate inputs
to the logistic regressor, hence in this logistic regressor there are two
input features instead of one. (dashed) Represents the performance of
a truly random classifier. sMCI, stable mild cognitive impairment;
pMCI, progressivemild cognitive impairment.

regressors in the sMCI versus pMCI discrimination task. Neuroimag-

ing homogenization did improve performance (Table S3), but it was still

lower than the performance achieved by NeuropsychBrainAge delta.

4 DISCUSSION

One of the key issues in the clinical application of BrainAge models is

developing models that are reliable and reproducible. To achieve this,

one strategy is to accurately track the trajectory of aging in a nor-

mal healthy population. Deviations from this normal aging trajectory

can then indicate risks of developing certain conditions. The advantage

of this type of modeling is two-fold. The first is that by training the

model on a healthy population and then tracking deviations from this,

no assumptions are made about the condition under study that could

bias the results. Second, it is much easier to collect data for healthy

individuals and hence get larger data sets to train with. These models

are then tested on the cohort with an underlying condition that we aim

to identify to ensure that the biomarker can correctly distinguish sub-

jects in each cohort. BrainAgemodels were trained on healthy controls

(N = 474) and then the logistic regressors only had to find a thresh-

old to divide the BrainAge deltas (a single feature) of sMCI (N = 95)

versus pMCI (N = 95). On the other hand, logistic regressors trained

directly on features had to combine information frommultiple features

(12 in the case of neuroimaging, 6 in the case of neuropsychological,

or 18 in total) directly only on our task set of sMCI (N = 95) versus

pMCI (N = 95). This could be leading to worse generalization due to

a lower number of datapoints because the confidence intervals (Cis)

of the cross-validation set are wider for the logistic regressor trained

directly on features.More research is needed to validate these findings

with diverse data sets and different pathologies.

The logistic regressor trained on NeuropsychBrainAge deltas was

able to outperform all other models based on BrainAge deltas. It per-

forms very similarly to using each BrainAge delta as separate inputs

to the logistic regressor (multidomain approach), showing that all the

information captured by StructBrainAge is already captured by Neu-

ropsychBrainAge. In comparison to other state-of-the-art models such

as the BrainAge model original developed by Gaser et al.,1 based on

structural imaging features and therefore similar to our study’s Struct-

BrainAge. Gaser et al’s model achieved accuracies of 0.81, lower than

the 0.85 achieved by ours. It should be noted that the BrainAge model

based on neuropsychological features performs worse in the task of

predicting age, since its mean absolute error (MAE) in the test set for

healthy controls isworse before bias correction than themodel trained

on neuroimaging data.

Age-prediction models have utility in capturing atypical aging, but

it is crucial to minimize methodological variance by building accu-

rate models that capture biological variance. Overfitted models can

result in smaller differences between AD and CN individuals, whereas

models with lower accuracy might capture better biological vari-

ance as shown by previous studies.4,43 Although more research is

needed, since other studies argue that “loose fitting” violates the

conceptual foundation of BrainAge modeling, can be highly problem-

atic from a methodological point of view, and might lead to results

that are uninterpretable.44 Somemoderately accurate models demon-

strate a high delta for AD and a strong correlation with AD scales,

whereas the model with the highest delta shows a weaker corre-

lation with behavior.43 Nonlinear relationships exist between model

accuracy, deltas, and behavioral correlations. Therefore, having higher

model accuracy in the age-prediction task does not result in better

differentiation of sMCI versus pMCI subjects as shown by our Neu-

ropsychBrainAge model being worse at age prediction but better at

differentiation compared to the StructBrainAge. Regularized models

in the patient population, despite lower accuracy, may be beneficial,

as they focus on specific features related to atypical aging. Comparing

models based on their performance and delta-behavior correlations in

patient data is a promising but open area, requiring further studies to

define appropriatemodel-selection procedures.

The large difference in accuracy between models trained in neu-

roimaging and neuropsychological tests, and after careful inspection

of other models in the literature, raises the question of whether

the concept of BrainAge as a biomarker is robust and not strongly

model dependent. Further studies are required to better understand

whether there is a correlation between MAE before age bias correc-

tion and better performance on different classification tasks. There is

a wide variety in reported BrainAge deltas between studies for simi-

lar cohorts. For example, AD subjects may have mean BrainAge deltas

ranging from+5.35 years in one study to+10.70 in another.3 This great

variability indicates the need for further research on how to ensure
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that BrainAge-derived biomarkers are robust for clinical application

across sites and subjects.

There might be concern in using neuropsychological tests to assess

conversion, since they are used to assign the healthy control, MCI, and

AD labels in the first place. In ADNI, a selection of these tests are used

in combinationwith cutoff points to assign those labels aswell as other

clinical assessments.25 Various tests, such as clinical dementia rating,45

are used to assign labels that we did not use in our study. However,

the most important remark is that we trained our BrainAge model on

healthy controls and then assessed the MCI conversion from baseline

scores. There is no data leakage in terms of biases in the BrainAge

deltas, as the model is not trained on MCI subjects but on healthy

controls. These tests have been used to assign subjects who belong

to MCI at baseline, but we can predict future conversion to AD with

those same scores without requiring future scores beyond the AD cut-

off points. This is evidence to show that hard cutoff points are not the

optimal tool for assigning labels, as with hard cutoffs we label subjects

into the same category (MCI) that have different pathological trajecto-

ries (sMCI vs pMCI). It is important to note that pMCIs are assigned

as MCIs with the baseline scores because of the test cutoff scores,

and we can distinguish them from sMCI in the future with the base-

line scores, but never using future assessment scores, whichmake their

label switch fromMCI to AD. This shows that more information can be

extracted fromneuropsychological tests than is obvious by using cutoff

points.

The logistic regressor trained directly on the neuropsychologi-

cal features performs similarly to the logistic regressor trained on

the NeuropsychBrainAge deltas. This is to be expected because the

NeuropsychBrainAge delta is just a linear combination of the neu-

ropsychological features, hence they both contain similar information.

Therefore, the logistic regressor trained onNeuropsychBrainAge delta

is just two linear transformations of the neuropsychological features

instead of a single linear transformation when training directly on

the neuropsychological features. However, the correlation between

NeuropsychBrainAge delta and time to conversion is stronger than

for any individual neuropsychological feature after correcting for age,

education, and sex, and also shows a higher correlation than PCA

decomposition.

The advantage of using the NeuropsychBrainAge delta over using

the neuropsychological features is two-fold. First, it is a good sum-

mary metric for clinicians because in one single value it is both a

good predictor of conversion and has easy interpretation due to its

high correlation with time to conversion. The higher the Neuropsych-

BrainAgedelta the less time to conversion fromMCI toAD. Second, it is

trainedonahealthypopulationwith ahighernumberof subjects andno

assumptions except that the subject are cognitively healthy, this could

potentially lead to a reduction in bias and less overfitting. TheCIs of the

NeuropsychBrainAge models in cross-validation accuracy, sensitivity,

and specificity are smaller than the model directly trained on the neu-

ropsychological features, thus showing some robustness to changes in

the input training data. Similarly, a positive effect of first training on the

age task in healthy subjects has been shownwith larger cohorts.2,4 Fur-

ther research is needed to investigate to what extent this is the case

with neuropsychological tests. Moreover, further explorations are also

required combiningdifferent cohorts anddata sets to showrobust gen-

eralizability, although this is also challenging as different studies use

different neuropsychological tests.

Amajor limitation to our study is lack of generalizability to different

types of populations; this study is intended more as a case study. The

model will not be able to perform well if the population under study

varies significantly in comparison to the data used to train the model—

for example, if the subjects under study come from sociocultural

backgrounds different from those from the ADNI cohort. Similarly,

it would require the neuropsychological batteries to be the same as

those set out in ADNI. However, it is a valuable study to showcase the

potential of this type of approachwhen using neuropsychological tests.

In this study we have shown that neuropsychological features

combined with BrainAge modeling can yield a valuable biomarker to

distinguish between sMCI and pMCI subjects. This biomarker also

shows a strong correlation with conversion time, which is a sign of

a robust biomarker, as good biomarkers should have higher values

with higher levels of severity, in this case, less time to conversion.

Neuropsychological tests are better suited than neuroimaging-derived

features for clinical application due to their larger effect size and

lower cost to administer.22 Even when accounting for site effects

in neuroimaging-derived features by homogenization techniques, the

neuropsychological-based models still outperformed the neuroimag-

ing ones. This shows that the use of BrainAge models combined with

specific neuropsychological tests for a specific condition can provide

valuable and accurate biomarkers.

5 CONCLUSION

Wepresent a BrainAgemodel trained on neuropsychological tests able

to discriminate sMCI subjects from pMCI subjects. BrainAge models

have the advantage of training on a larger cohort of healthy controls

(CN) to measure deviations from the norm. By using features tightly

linked to a specific condition, such as the neuropsychological tests for

AD determination, we were able to achieve good performance on the

classification tasks. Furthermore, we have shown that this is a robust

biomarker because it was correlated with the conversion time from

MCI patients to AD. We expect that our approach can be extended to

other neurological and psychological disorders by applying the same

models but with different neuropsychological tests specific to each

condition.
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